
WESTPA: An Interoperable, Highly Scalable Software Package for
Weighted Ensemble Simulation and Analysis
Matthew C. Zwier,† Joshua L. Adelman,‡ Joseph W. Kaus,¶ Adam J. Pratt,¶ Kim F. Wong,§

Nicholas B. Rego,¶ Ernesto Suaŕez,∥ Steven Lettieri,∥ David W. Wang,¶ Michael Grabe,⊥

Daniel M. Zuckerman,∥ and Lillian T. Chong*,¶

†Department of Chemistry, Drake University, Des Moines, Iowa 50311, United States
‡Department of Biological Sciences, ¶Department of Chemistry, §Center for Simulation and Modeling, and ∥Department of
Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15206, United States
⊥Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco,
California 94158, United States

*S Supporting Information

ABSTRACT: The weighted ensemble (WE) path sampling
approach orchestrates an ensemble of parallel calculations with
intermittent communication to enhance the sampling of rare
events, such as molecular associations or conformational
changes in proteins or peptides. Trajectories are replicated and
pruned in a way that focuses computational effort on
underexplored regions of configuration space while maintain-
ing rigorous kinetics. To enable the simulation of rare events at
any scale (e.g., atomistic, cellular), we have developed an open-
source, interoperable, and highly scalable software package for
the execution and analysis of WE simulations: WESTPA (The Weighted Ensemble Simulation Toolkit with Parallelization and
Analysis). WESTPA scales to thousands of CPU cores and includes a suite of analysis tools that have been implemented in a
massively parallel fashion. The software has been designed to interface conveniently with any dynamics engine and has already
been used with a variety of molecular dynamics (e.g., GROMACS, NAMD, OpenMM, AMBER) and cell-modeling packages
(e.g., BioNetGen, MCell). WESTPA has been in production use for over a year, and its utility has been demonstrated for a broad
set of problems, ranging from atomically detailed host−guest associations to nonspatial chemical kinetics of cellular signaling
networks. The following describes the design and features of WESTPA, including the facilities it provides for running WE
simulations and storing and analyzing WE simulation data, as well as examples of input and output.

1. INTRODUCTION

Despite advances in computer hardware, many rare events
including molecular associations or large-scale conformational
transitions in proteins are beyond the reach of dynamical
simulations. A number of software packages have therefore
been developed for rare-events simulations that enhance
sampling without introducing bias in the dynamics. These fall
into three categories: (a) packages that integrate enhanced
sampling into the dynamics engine (e.g., Milestoning1 in
MOIL2 or transition path sampling3 in CHARMM4), (b)
framework software that interfaces with multiple dynamics
engines (e.g., FRESHS,5 which employsamong othersthe
forward flux sampling approach6); and (c) analysis packages
that provide external tools to extract long-time scale
information from already completed simulations (e.g.,
MSMBuilder7 or EMMA,8 which construct Markov state
models9 that can in turn be used to enhance sampling in an
iterative manner10,11).
Here, we report on a computational framework for studying

rare events that employs the weighted ensemble (WE) path

sampling approach. WE is a proven methodology for
accelerating simulations of rare events while maintaining
rigorous kinetics.12−26 In some cases, both pathways and rate
constants can be generated with orders of magnitude greater
efficiency than standard simulations12,15,18,19,23 in terms of total
computing time. The approach is rigorous for any type of
stochastic simulation method, including molecular dynamics
(MD) and Monte Carlo simulations. WE sampling can yield
equilibrium as well as nonequilibrium observables (state
populations and rate constants, respectively) and is applicable
to equilibrium or nonequilibrium steady-state processes and
simulations of relaxation toward a steady state.16 The efficiency
of WE simulations can be further increased, particularly in the
presence of metastable intermediates, by the use of reweighting
procedures that determine global thermodynamic properties in
terms of local kinetic properties.17,27

Received: November 26, 2014
Published: January 13, 2015

Article

pubs.acs.org/JCTC

© 2015 American Chemical Society 800 DOI: 10.1021/ct5010615
J. Chem. Theory Comput. 2015, 11, 800−809

D
ow

nl
oa

de
d

vi
a

U
N

IV
 O

F
PI

T
T

SB
U

R
G

H
 o

n
A

ug
us

t 2
6,

 2
02

0
at

 2
2:

57
:0

5
(U

T
C

).
Se

e
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n
ho

w
 to

 le
gi

tim
at

el
y

sh
ar

e
pu

bl
is

he
d

ar
tic

le
s.

pubs.acs.org/JCTC
http://dx.doi.org/10.1021/ct5010615

We have developed an open-source, interoperable, highly
scalable software package that embodies the full range of WE’s
capabilities. Called WESTPA (The Weighted Ensemble
Simulation Toolkit with Parallelization and Analysis, https://
chong.chem.pitt.edu/WESTPA), this package has been avail-
able for over a year as (to our knowledge) the first highly
scalable and freely available WE software package. We note that
since the release of WESTPA, another WE package has become
available AWE-WQ25 which was designed for use with
the Work Queue task distribution system and has been used in
conjunction with the GROMACS molecular dynamics (MD)
engine.28 Additionally, several in-house implementations of the
WE algorithm exist, including WExplore,24 which has been used
with the CHARMM simulation package.4 Our WESTPA
package appears to be unique in its demonstrated ability to
interface with a large number of dynamics engines and in
providing a comprehensive framework for data generation and
storage, along with integral support for the novel analysis and
simulation protocols we describe below. The software has been
designed to interface conveniently with any dynamics engine at
any system size or level of detail, including atomistic, coarse-
grained, and whole-cell. The WESTPA software package can be
used with any typical scientific computing platform, including
desktop workstations, commodity clusters, and supercom-
puters, and can automatically take advantage of accelerator
technologies like graphics processing units (GPUs) or other
coprocessors.
To date, WESTPA has been used with MD engines

(AMBER,29 GROMACS,28 NAMD,30 and OpenMM31), a
Brownian dynamics engine (UIOWA_BD32,33), and systems
biology engines (BioNetGen34 and MCell35). Interfacing
WESTPA with a new dynamics engine is straightforward, as
no modifications to the source code of the dynamics engine are
necessary. The WESTPA software package has enabled efficient
atomistic simulations of host−guest associations in explicit
solvent,19 atomistic conformational sampling of peptides in
implicit solvent,27 coarse-grained simulations of large-scale
protein conformational transitions,20,23 and nonspatial simu-
lations of chemical cellular signaling networks in the context of
systems biology.22

In the present report, after a brief review of WE algorithms,
we describe the design and features of WESTPA that have
enabled its broad applicability.

2. OVERVIEW OF WE SAMPLING
WE sampling uses an ensemble of independent simulation
trajectories, each carrying a statistical weight, to explore space
and promote relatively even simulation coverage along a
(possibly multidimensional) progress coordinate describing a
rare event. This progress coordinate is divided into bins, and
the relatively even coverage of WE simulations is attained by
periodically replicating trajectories in bins with too few
trajectories and pruning trajectories in bins containing too
many trajectories (Figure 1).12 There is great flexibility in bin
construction, as detailed below, andnotablythe choice of
bins affects the efficiency but not the correctness of WE
simulations. Careful management of the statistical weights
associated with each trajectory ensures that no bias is
introduced by this procedure, which amounts to a statistical
resampling among trajectories.16 When using MD simulations
to propagate the dynamics, a stochastic thermostat is required
since the dynamics of the WE trajectories must diverge when
the trajectories are replicated. Although the choice of

thermostat can generally be expected to perturb dynamics,36,37

we note that certain stochastic thermostats can be run with
sufficiently weak coupling constants such that the dynamical
properties of simple test systems are minimally perturbed
relative to those of the microcanonical (NVE) ensemble.37

Thermodynamic information such as free energy landscapes
(the spatial distribution of weights) and kinetic information
such as rates of transition between states (the fluxes of weight
across arbitrary surfaces in progress coordinate space) are
simultaneously generated and readily available from WE
simulations. The efficiency of WE sampling compared to
standard (brute-force) simulation has been shown to increase
dramatically with increasing barrier height (or, equivalently,
increasingly rare events).15,19,23

WE is naturally suited to simulating a variety of initial
conditions and dynamical ensembles including equilibrium,
nonequilibrium steady states (both with and without driving
forces), and relaxation from an arbitrary initial condition to a
chosen steady state.16 Most basically, WE can be used to study
relaxation from an initial condition, specified by the initial set of
trajectories and their weights, toward equilibrium. With only
slight additional complexity, WE can be used to estimate rates

Figure 1. Basic weighted ensemble protocol. A two-dimensional
energy landscape is partitioned into bins using a rectilinear grid with a
target of three trajectories per bin (lower left panel). Trajectories,
which are each assigned a weight, are initiated in one of the dominant
metastable basins and are propagated for a short interval, τ. A
magnified view of the bin containing these trajectories is shown in (A),
and the paths that each trajectory segment follow are shown in green
for iteration N. The trajectories are then resampled according to the
WE protocol. (B) One of the three trajectories reaches an unoccupied
bin, and its weight is evenly distributed among three copies. Similarly
one of the two trajectory segments that remained in the initial bin is
replicated to maintain the target number of trajectories per bin. This
collection of six trajectories of the system are propagated again for an
interval τ during iteration N + 1 (red paths). (C) When a bin contains
more than the target number of trajectories, one or more are
terminated (dashed paths), and their weight is assigned statistically to
the remaining trajectories in the bin. Trajectory segments for the
subsequent iteration (N + 2) are shown as purple paths.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/ct5010615
J. Chem. Theory Comput. 2015, 11, 800−809

801

https://chong.chem.pitt.edu/WESTPA
https://chong.chem.pitt.edu/WESTPA
http://dx.doi.org/10.1021/ct5010615

of unidirectional (nonequilibrium) steady states, as imple-
mented in the original WE paper;12 a steady state is simulated
by removing trajectories reaching a specified target state and
reinitiating them from a chosen start-state distribution. These
procedures track the unbiased evolution of an initial
distribution toward a steady state, but the relaxation process
may be very slow.
To enable WE simulations to reach steady states of interest

(including equilibrium) despite slow relaxation times, enhanced
WE procedures have been developed.17,27 These newer
approaches take advantage of the fact that all WE trajectories
are unbiased (no artificial forces are applied) and hence can be
used to estimate conditional probabilities, or effective rate
constants, for bin-to-bin transitions. These rate constants, in
turn, can be used to estimate steady-state bin populations which
would hold at long times.17 Two separate approaches for using
the bin-to-bin rates have been developed. In the first,
trajectories are reweighted on-the-fly to ensure conformance
with estimated steady-state bin probabilities.17 In the second, a
post-simulation analysis protocol is used to estimate kinetic and
equilibrium properties for arbitrary states selected after the
simulation has been run.27 These procedures can be quite
important for enhancing the efficiency of WE simula-
tion,17,20,21,23,25−27 particularly in the presence of metastable
intermediate states that would otherwise make converged
determination of thermodynamic and kinetic observables
(populations and rates) prohibitively slow.
The basic WE procedure of running independent trajectories

for fixed time intervals with intermittent communication lends
itself naturally to parallelization and interoperability. The
intermittency of communication leads almost immediately to
excellent parallel scaling, with high performance whenever the
length of trajectory segments exceeds the “overhead” time for

non-dynamics operations such as writing trajectories or
assessing bin occupancy.
Facile interoperability arises from WE’s use of fixed-length

trajectory segments. The only requirements for interfacing with
a dynamics engine are the ability to start and stop dynamics and
query progress coordinates at fixed time points. There is no
need to modify the dynamics software itself because WE does
not “catch” trajectories in the act of crossing from one bin to
another; rather, the theory and implementation are built on
examining the ensemble at fixed time points. This permits the
use of a variety of dynamics engines in conjunction with WE
sampling, and, importantly, optimizations for these dynamics
packages designed to increase simulation throughput can
remain in place when used in WE simulations.
Implementation parameters for a WE simulation can be

changed on-the-fly without biasing the results.16 In particular,
the progress coordinate(s) and the binning can be updated
during the course of a simulation without needing to discard
existing simulation data, allowing the computational cost of a
WE simulation to be tuned on-the-fly to maximize its
effectiveness.
WESTPA is designed to run WE simulations efficiently while

exploiting all of the above strengths of WE sampling,
particularly supporting a variety of dynamics engines, various
initial and boundary conditions, online tuning of progress
coordinate and binning, massively parallel dynamics propaga-
tion, and (via analysis tools and the plugin architecture
described below) the enhanced WE procedures described
previously.

3. ORGANIZATION AND FEATURES OF WESTPA

3.1. Software Design. The design of the WESTPA code is
highly modular (see Figure 2), enabling straightforward
customization of how simulations can be performed. New or

Figure 2. Logical structure of the WESTPA software package. Components shown in blue are implemented in WESTPA and may be replaced, if
desired, by custom code. Components shown in yellow indicate functionality that WESTPA coordinates, which can generally be customized by
configuration options. Components shown in red must be provided by the user, typically as Python modules, shell scripts, or compiled executables.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/ct5010615
J. Chem. Theory Comput. 2015, 11, 800−809

802

http://dx.doi.org/10.1021/ct5010615

altered modules can easily be substituted into the WESTPA
framework at runtime. In particular, WESTPA provides a
number of hooks that allow plugins (small pieces of code
written by the user) to perform custom processing at several
points through the main simulation loop without the need to
modify the WESTPA code itself. For example, such plugins
have been used to implement a finite-temperature string
method23 without requiring modifications to the “core”
WESTPA code. For more complex customizations, most
components of the WESTPA software (such as those
responsible for propagating dynamics or effecting the binning,
replication, and pruning of the WE sampling scheme) can also
be swapped for custom versions at run time by modification of
a configuration file.
WESTPA is written in the Python programming language,38

allowing WESTPA to leverage the diverse, high performance,
and rapidly expanding Python scientific computing ecosys-
tem.39 WESTPA achieves native Fortran or C performance by
its use of Numpy arrays40 for numeric data and the
optimization of critical routines through the Cython extension
language for Python.41 This combination of Python, Numpy,
and Cython enables rapid development of readable source code
without a substantial sacrifice of run-time performance.
3.2. Compatibility with Existing Dynamics Software.

As the WE approach is rigorously correct for any stochastic
simulation,16 WESTPA is designed to interface with any
existing simulation package. This includes traditional stand-
alone MD packages like GROMACS,28 AMBER,29 or
NAMD.30 For increased flexibility and efficiency, WESTPA is
also capable of interfacing with simulation toolkits like
OpenMM31 or fully user-programmed routines via a relatively
simple interface; a customized dynamics propagator need only
define three relatively simple Python functions (“propagate
dynamics”, “generate initial state for a new trajectory”, and “get
progress coordinate”). Notably, because propagation of
dynamics is typically handled by programs or routines external
to WESTPA, any optimizations that are already in place for
propagation of dynamics (such as use of optimized linear
algebra libraries or offloading of computational work to GPUs
or other coprocessors) are automatically used by WESTPA
simulations, as previously discussed. Configuring WESTPA to
use a new dynamics engine (i.e., one that has not been used
with WESTPA previously) usually only requires hours or a few
days of effort, since only shell scripting and notably no
“under-the-hood” modifications of the dynamics engine source

code is required. Instructions for interfacing with various
software packages are available through the WESTPA Web site
(https://chong.chem.pitt.edu/WESTPA/).

3.3. Flexibility in Tuning WE Cost/Payoff Balance. The
WE approach is highly flexible among enhanced sampling
techniques, and WESTPA provides users with the ability to
exploit this flexibility to tune the balance between computa-
tional cost and level of sampling. As discussed in Section 2, WE
naturally supports multidimensional progress coordinates and
may be used to perform simulations under equilibrium
conditions or nonequilibrium steady states. The enhanced
WE procedures discussed previously may be used to accelerate
convergence in both thermodynamic and kinetic observables.
Progress coordinates can represent history-dependent quanti-
ties (e.g., the last state visited by a trajectory), which can be
used by these enhanced WE procedures in attaining proper
steady states and in subsequent analysis of thermodynamics and
kinetics. WESTPA includes support for equilibrium, non-
equilibrium, or steady-state boundary conditions, flexible
(possibly history-dependent) binning schemes, and the
enhanced WE procedures described above.
Progress coordinates in WESTPA may be single- or

multidimensional and may be divided into bins by boundaries
on grids, Voronoi cells, or any user-defined function that can
map progress coordinate values to integers (bin numbers). Sets
of bins may be arbitrarily nested, allowing the rapid
construction of complex binning schemes. Examples of these
binning strategies are shown in Figure 3, and their
implementation in WESTPA is described in the Supporting
Information. The target number of trajectories can vary from
bin to bin, thus allowing a direct specification of the extent of
computational resources to devote to each region of progress
coordinate space. Binning, including the ideal number of
trajectories in each bin, may change at any point in the
simulation without needing to discard existing simulation data.
Combined, these features allow a user of WESTPA to, for
example, assign different progress coordinates to different
regions of configuration space, with each region (or bin) having
a different number of trajectories. This allows the sampling and
computational cost of a WESTPA simulation to be tuned to
make maximally efficient use of computer resources; further,
this balance can be adjusted on-the-fly as a simulation evolves.

3.4. Data Storage. WE simulations consist of a great
number of small dynamics segments (millions or more), and
WESTPA orchestrates efficient storage of this simulation data.

Figure 3. Discretization of progress coordinate space into bins. The conformational space of a simple two-dimensional energy with multiple
metastable basins23 is discretized into bins using different schemes available in WESTPA. In (A) the system is divided into bins using a grid, while in
(B) a set of points covering the landscape defines a tessellation of Voronoi cells. Bins may be defined hierarchically as shown in (C), where a coarse
grid is further subdivided into finer sets of bins in some regions. In (D), bin boundaries extend radially from the center of the potential and are
implemented using a user-defined function that, given a set of coordinates, returns the appropriate bin assignments. Examples of how each binning
scheme is defined in WESTPA are provided in the Supporting Information.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/ct5010615
J. Chem. Theory Comput. 2015, 11, 800−809

803

https://chong.chem.pitt.edu/WESTPA/
http://dx.doi.org/10.1021/ct5010615

Foremost, subsets of trajectories formally share history,
resulting from the fact that trajectories may be replicated by
the WE approach prior to continuation. For maximum
efficiency, this shared history is stored only once, along with
a directed graph describing the connectivity of trajectory
segments. The type of data needed to drive or extract useful
results from WE simulations will necessarily vary from problem
to problem, so WESTPA provides users with facilities for
storing data either in the native trajectory formats of the
underlying dynamics engines or in a WESTPA-managed data
store. Trajectories themselves (e.g., the time-ordered config-
urations of molecular dynamics trajectories) are typically stored
in the native format of the underlying dynamics engine, which
is usually highly optimized for space or speed (for instance,
XTC files for GROMACS, NetCDF files for AMBER, or DCD
files for NAMD). In addition to the (required) progress
coordinate data, arbitrary data sets associated with each
trajectory segment may be calculated and stored directly by
WESTPA during the simulation for efficient access during
subsequent analysis. These data sets may be stored at an
arbitrarily high time resolution. WESTPA stores all data in the
cross-platform, language-neutral, highly efficient HDF5 file
format.42 The HDF5 library provides optimized storage and
retrieval of numeric data. Data produced by WESTPA may be
accessed from any programming language which has HDF5
bindings (Python, C, C++, Fortran, Java, R, MATLAB, and
Julia, among many others).
3.5. Parallelization and Scaling. WE simulations are

naturally parallel, as trajectories are very loosely coupled; the
propagation of N trajectories can always be distributed over up
to N cores, and WESTPA provides facilities to accomplish this.
As shown in Figure 4, perfectly linear scaling has been achieved
over thousands of cores with modest overhead. For large-scale

simulations (e.g., condensed-phase molecular dynamics simu-
lations), performance is generally not limited by the speed of
communication between processors but rather how quickly
external programs (e.g., for propagating dynamics or extracting
progress coordinates) can be spawned or how quickly analysis
tools can read data from disk. These operations appear as
overhead which reduces the slope of the scaling plot below
unity, but the performance impact of these operations can be
mitigated by tightly integrating WESTPA with the underlying
dynamics code. Importantly, even without such integration, the
speedup observed in WE simulations can potentially more than
compensate for the overhead imposed by segment startup/
shutdown or disk I/O relative to a lower-overhead but lower-
efficiency brute force simulation.
WESTPA includes facilities to distribute tasks such as

dynamics propagation or subsequent analysis over multiple
cores within a node and multiple nodes within a network.
Different communication patterns are available for different
combinations of core count and the amount of data generated
for each segment of dynamics. WESTPA includes facilities for
thread-based (OpenMP-like) and process-based (MPI-like)
parallelization within a single node and custom TCP/IP
parallelization between nodes. An interface to traditional MPI
facilities for either intranode or internode communication is
also provided for sites where a suitable MPI implementation
exists. Due to the modular design of WESTPA, other task
distribution protocols can be added as needed. For typical
simulations where (as discussed above) the computational cost
of dynamics propagation far outstrips the cost of communica-
tion among processors, no substantial difference in scalability or
efficiency is observed among the various communication
patterns available in WESTPA. The internode communication
systems fully support heterogeneous clusters (those having
nodes of differing speeds), including implicit load balancing via
asynchronous dispatch of tasks to idle cores. Though designed
for WESTPA, the task distribution module (called wwmgr) is
completely general and may be used for writing parallel
programs in Python independently of the rest of the WESTPA
framework. To facilitate its use in this way, wwmgr is made
available for download separately from WESTPA (in addition
to being included with WESTPA).

3.6. Analysis Tools. WESTPA includes a suite of tools to
analyze WE simulations. (See Table 1 for brief descriptions.)
Each tool focuses on performing one task (e.g., “assign
trajectories to bins”,“calculate the probability distribution of
progress coordinate values”, or “plot the time evolution of a
probability distribution”), so that tools can be chained together
to perform complicated analysis tasks. Additionally, common
analysis tasks are packaged as a Python programming
framework for ease of reuse in customized analysis scripts.
Most tools can run on multiple cores to increase analysis
throughput. Both input for and output from these analysis tools
are stored in the flexible and efficient HDF5 file format.
Analyses not directly addressed by the tools packaged with
WESTPA are relatively simple to implement in custom
programs, which use the HDF5 library to read data recorded
by WESTPA. The structure and meaning of data produced by
WESTPA and its tools are documented on the WESTPA Web
site or in the output of the online help for analysis tools (the
“--help” command line option).

3.7. Extensibility and Plugins. WE sampling has not
reached its full potential, as shown by the continued
development of new algorithms for improving the WE

Figure 4. WESTPA scales linearly with minimal overhead. The solid
line represents theoretically perfect (linear) scaling with no overhead;
the dotted line represents the observed scaling of WESTPA, which is
perfectly linear with 11% overhead (due to the cost of input/output
associated with each trajectory segment). These timings are from a WE
atomistic molecular dynamics simulation of the association of the
MDM2 protein and a 13-residue fragment of p53 in GB/SA implicit
solvent using GROMACS. This WE simulation employed up to
10,000 trajectories per iteration, each running on a single core.
Individual trajectory segments were τ = 50 ps in duration, requiring
about 10 min of wallclock time; the total simulation required about a
month on up to 4096 cores.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/ct5010615
J. Chem. Theory Comput. 2015, 11, 800−809

804

http://dx.doi.org/10.1021/ct5010615

scheme,17,21,23,24,27 and WESTPA is designed to easily facilitate
changes and extensions to the WE approach. In addition to
WESTPA’s modular design that allows a user to replace
individual components of the software package, a simulation
can be modified in-progress via WESTPA’s plugin system. A
plugin is a piece of code that is registered to run at a specific
execution point in the main simulation loop. After activating
the plugin in the configuration file, WESTPA automatically
executes it at runtime, giving it full access to all of the
underlying data structures andimportantlythe ability to
modify them. Currently, WESTPA allows plugins to run during
the initial startup of a WE simulation and during final
shutdown, as well as before and after the WE resampling
step, trajectory propagation, and individual iterations. Multiple
plugins can be registered at the same execution point and run in
a specific order to allow complex behaviors to be encoded as a
series of small and discrete steps.
As an example, the plugin system was used in ref 23 to

validate a WE-based string method, in which the bin space
(consisting of a one-dimensional path through a high
dimensional phase space) was dynamically updated based on
the accumulated sampling of the WE trajectories. Additionally,
the weights of trajectories were adjusted on-the-fly to hasten
convergence of the simulations using a reweighting protocol
that uses bin-to-bin fluxes to solve for the global steady-state of
the system.17 This string method plugin is bundled with
WESTPA.

4. RESOURCES FOR USERS AND DEVELOPERS
4.1. Resources for Users. To help users get started quickly

with the WESTPA software, we provide tutorials, example
simulations, and tools to facilitate communication among
WESTPA users. The WESTPA Wiki (https://chong.chem.pitt.
edu/wewiki/) provides a collaboratively edited source of
documentation on WESTPA, including both detailed doc-
umentation about the WESTPA software itself and general
documentation on how to construct and run WE simulations
using WESTPA. A number of tutorials describe how to use
WESTPA with the popular GROMACS, AMBER, and NAMD
molecular dynamics engines and the BioNetGen systems
biology engine, along with how to construct a custom WE
simulation using the OpenMM toolkit. The files necessary for

running most of these tutorials are packaged as examples
distributed with the WESTPA source code.
The WESTPA command-line tools themselves (see Table 1)

are constructed with usability in mind. Each tool has been
designed to be modular and optimized for a specific analysis
task, allowing users to construct relatively complex analyses
from discrete and comprehensible analysis steps. Input and
output data for these analysis tools are stored in HDF5 files,
allowing users to insert their own analysis programs, written in
their programming language(s) of choice, into the analysis
chain provided by WESTPA tools in the event that greater
flexibility is required in analyzing WESTPA simulations. Each
tool has brief but complete online help, accessible by providing
the “--help” option on the command line, which describes the
purpose, use, input, and output of the tool. The output format
descriptions are particularly notable, as they provide enough
information to allow users to take the output from a WESTPA
analysis tool and use it as input (via the HDF5 library) for their
own analysis scripts and programs, which are often necessary
for answering specific scientific questions or preparing
publication quality figures.
Finally, we provide a number of mechanisms to foster

communication among the WESTPA community to ensure
that users can employ WESTPA in as effective a manner as
possible in their research. We have created an e-mail mailing list
for WESTPA users to provide a forum where questions about
how to run WE simulations can be asked and addressed;
instructions for joining this list are posted on the WESTPA
Web site. Further, the Github site which hosts the WESTPA
code (described below) provides a mechanism for reporting
potential problems with the WESTPA software and tracking
their resolution. The same mechanisms also track requests for
improvements to the software, allowing WESTPA users to give
feedback to developers.

4.2. Resources for Developers. WESTPA has been
designed from its inception to support collaborative community
development of both the WE method and the WESTPA
software that implements it. In addition to the use of an
expressive and accessible programming language (Python), the
strictly modular design of WESTPA (Figure 2) separates
different aspects of the WE algorithm (and supporting code)
into discrete units which are more readily understood and

Table 1. Partial List of Simulation and Analysis Tools Packaged with WESTPA

tool description

w_init Initialize a new weighted ensemble simulation. Populate the new simulation with trajectories drawn from any of several possible initial states.
w_run Run a WESTPA simulation in serial or parallel.
w_bins Describe or alter the bin space, including trajectories per bin, for a WESTPA simulation.
w_states Add or remove initial (source) or target (sink) states for a WESTPA simulation.
w_crawl Perform a custom analysis on data from an entire WESTPA simulation (e.g., to calculate a new simulation observable from existing trajectory data).
w_pdist Calculate probability distributions of simulation observables (such as progress coordinate values or spatial distributions).
w_eddist Calculate transition event duration (transit time) distributions, useful for characterizing the diversity of transition pathways43 in a WESTPA

simulation.
plothist Plot histograms (probability distributions) for data generated with w_pdist or w_eddist. Supports one- or two-dimensional histograms either of

instantaneous distributions or distributions averaged over a specified simulation time window. Also supports displaying the evolution of a one-
dimensional probability distribution as a function of simulation time (useful for gauging simulation progress).

w_assign Assign trajectories to modified bins, progress coordinates, and/or macrostates for the purposes of analysis.
w_ntop Select a number of trajectories from a given bin (e.g., for visualization of structures in atomistic simulations).
w_trace Trace the history of an individual trajectory, optionally recording time-resolved simulation observables along the trajectory.
w_stateprobs Calculate the average population of macrostates previously defined by w_assign, including time-correlated confidence intervals.
w_kinetics Analyze the kinetics of WESTPA simulations, including bin-to-bin and state-to-state fluxes and transition rates.
w_kinavg Perform averaging of kinetics observables previously calculated with w_kinetics, taking time correlation into account.
ploterr Plot the time evolution of simulation observables, including confidence intervals.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/ct5010615
J. Chem. Theory Comput. 2015, 11, 800−809

805

https://chong.chem.pitt.edu/wewiki/
https://chong.chem.pitt.edu/wewiki/
http://dx.doi.org/10.1021/ct5010615

modified. These units of code are described and linked by well-
defined application programming interfaces (APIs), which
allow their reuse both in modifying the WESTPA code and
in customizing it for a particular simulation. Documentation for
these APIs is generally included in the code itself, ensuring that
developers always have in-context access to the documentation
they need to understand and use the WESTPA code.
WESTPA source code development is tracked using the Git

version control system,44 which encourages decentralized
collaborative development while maintaining a record of prior
versions of the code (of critical importance to scientific
reproducibility). The WESTPA Git repositories are hosted
publicly on the enormously popular and productive Github
collaborative development site, which provides not only space
to store the code but also mechanisms for tracking bugs and
feature requests and an easily accessible forum for discussing
proposed modifications to the code prior to their incorporation.
WESTPA includes unit tests (currently coordinated with the
nose testing framework for Python) which demonstrate the
correctness of key algorithms; additional regression tests
provide a means of ensuring that continued development
does not “break” discrete portions of the code that formerly
worked correctly. Further, the example simulations distributed
with WESTPA (described above) function as integration
(functional) tests, ensuring that the WESTPA package works
correctly as a whole.
Of particular note for developers of WE methods are the

modules and APIs for parallelization and creating command-
line tools for working with WESTPA simulations. The
parallelization API is fully general and maps cleanly onto the
Python programming language, encouraging its use not only in
WESTPA but also in any Python script or application needing a
framework for multiprocessing and parallel task distribution.
The command-line tool API facilitates the creation of WESTPA
analysis programs and includes mechanisms for easily
incorporating parallelization, access to WESTPA HDF5 files,
and key analysis patterns into a user-created script. The
command-line tool API also provides facilities for seamless
code profiling, allowing a developer to determine where (and
why) an analysis script or simulation routine is running most
slowly and therefore could be optimized for enhanced
performance.
Development of software does not usually proceed in

isolation, as programmers should (and frequently must) confer
with each other to make informed choices about how best to fix
a bug or implement a new feature. In addition to the issue
tracking and commenting facilities provided by Github, we
provide a WESTPA developers’ mailing list (currently hosted
on Google Groups) to encourage discussion among developers.
Further, information useful for those modifying (or interested
in modifying) the WESTPA code is provided on the WESTPA
Wiki (https://chong.chem.pitt.edu/wewiki/); this includes
guidelines for how best to write code for eventual inclusion
in WESTPA along with instructions for contributing changes
back to the WESTPA community.
We note in passing that several of the tools and techniques

discussed above (including use of version control, code
modularization and reuse, unit testing, profiling, and embedded
documentation) have recently been discussed by Wilson et al.
as “best practices” for scientific software development.45

5. EXAMPLE: BISTABLE DIMER IN A DENSE WCA
FLUID

During the development of WESTPA, the software package was
validated for a number of different systems of varying
complexity, in which direct comparisons were made between
WE simulations and results derived from long-time scale brute
force trajectories.19,23,27 Here we consider in more explicit
detail how WESTPA can be used to calculate dynamic and
distributional quantities from a molecular system, focusing on
key elements of a typical workflow and highlighting important
capabilities provided by the software package.
To that end, we examine a bistable dimer immersed in a

dense bath of particles46−48 that interact via the Weeks−
Chandler−Andersen (WCA) soft repulsive potential.49 The
dimer consists of a pair of particles interacting via a double-well
potential with minima corresponding to a compact and
extended conformation, separated by a 5 kBT barrier (Figure
5), described by the potential

= −
− −⎡

⎣⎢
⎤
⎦⎥U r h

r r s
s

() 1
()

bond
0

2

2

2

(1)

where r is the interatomic distance between particles, h = 5kBT,
r0 = rWCA, and s = rWCA/2, where rWCA = 21/6σ. The dimer is
solvated in a dense bath of particles that interact with each
other and the dimer via the WCA potential49

ε σ σ ε
=

− + <

≥

⎜ ⎟ ⎜ ⎟
⎧
⎨
⎪⎪

⎩
⎪⎪

⎡
⎣⎢
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥U r r r

r r

r r

()
4 ,

0,
WCA

12 6

WCA

WCA (2)

where m = 39.9 amu, σ = 3.4 Å, and ε = 120 kBT.
The system considered here contains 216 particles prepared

at a reduced density of ρσ3 = 0.96 and was prepared using the
custom scripts provided in ref 48. All trajectories were
propagated using OpenMM 6.131 using Langevin dynamics at
a reduced temperature of kBT/ε = 0.824 with a time step of δt =
0.002τ (4.3 fs) and a collision rate of τ−1, where τ = (σ2m/ε)1/2.
A long conventional brute force simulation, 2.5 × 108 δt in
length, was generated as a reference, with coordinates recorded
every 250 time steps.

Figure 5. Bistable dimer potential. The bond potential between the
two particles comprising the dimer (eq 1) is shown with compact (r/r0
= 1) and extended (r/r0 = 2) metastable states separated by a 5 kBT
barrier. A cartoon of each state is shown above its respective potential
minima, with the solvating WCA fluid depicted as gray circles.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/ct5010615
J. Chem. Theory Comput. 2015, 11, 800−809

806

https://chong.chem.pitt.edu/wewiki/
http://dx.doi.org/10.1021/ct5010615

The WE simulation was initiated from two conformations,
one with a compact and the other with an extended dimer.
Each was given a nonequilibrium weight of 0.8 and 0.2,
respectively, requiring that the system relax to the correct
equilibrium distribution during the simulation. The distance
separating the two particles in the dimer, r, was used as the
progress coordinate to enhance sampling of transitions between
the two states. Bins 0.1 Å in width, spanning the interval r =
[3,8] Å, with a target number of 12 trajectories per bin were
specified in the WESTPA system driver file. The WE
resampling frequency was set to 250 δt.
In the accompanying source code for this example (lib/

examples/wca-dimer_openmm in the WESTPA Github reposi-
tory), we provide two implementations of how a user can
specify the method by which WESTPA propagates the
segments of each trajectory. In the first, we use OpenMM’s
internal API via the provided Python wrapper to write a custom
propagator that makes direct calls to the low-level instructions
that step the system forward in time and then extract the
updated coordinates directly into memory without an
intermediate file I/O call. In the second, we use the generic
executable propagator provided by WESTPA to call a user
defined shell script that runs an OpenMM executable to
propagate dynamics with the appropriate initial coordinates and
velocities. The same script then parses the outputted trajectory
files to assign the progress coordinate. WESTPA defines and
makes accessible a number of environment variables on a per-
segment basis that can be used to configure the run and return
required results to the WESTPA master process. This latter
mode is more typical for programs that provide an executable
(e.g., pmemd in Amber or mdrun in Gromacs). Both approaches
give equivalent results, and only results from the custom
propagator are shown here. For this system, which contains
only 216 atoms, the dynamics are inexpensive to propagate
relative to the initialization and file I/O. In this regime, the
custom driver incurs a much smaller overhead since the system
is persistent in memory for each worker process and only needs
to be initiated once at the start of the simulation rather than at
the start of every trajectory segment. Additionally, the progress
coordinate is calculated using data in-memory for the custom
propagator, rather than by processing a file on disk. For the
hardware configuration we used, the custom propagator
required approximately 15 s per iteration (wallclock time),
whereas the executable propagator required nearly 3 min. The
discrepancy between the two approaches will be negligible for
larger or more detailed systems where the cost of propagating
the dynamics dominates the overall simulation time.
After defining the bin space, propagation protocol and

necessary input files, the w_init program initializes the WE
simulation from the predefined set of initial states and prepares
the first set of segments to be run. The w_run program is then
used to perform the WE sampling. This program coordinates
running the trajectory segments at each iteration, resampling
the trajectory ensemble, and coordinating the distributed
computational resources when run with a parallel work
manager. Here, the calculation was distributed over 4 NVIDIA
GPUs on a single node using the processes work manager.
Progress of the WE simulation was monitored both by
examining the log file, which provides per-iteration metrics
such as the number of occupied bins, elapsed wallclock time,
and statistics related to the distribution of weight on a per-
segment and per-bin basis. Additionally the HDF5 output file
generated by WESTPA along with the files generated

specifically by the dynamics engine were periodically analyzed
using programs included in the WESTPA analysis suite.
Here we used the w_pdist tool to calculate the probability

distribution for finding the system with a dimer extension
length of r. This distribution is shown in Figure 6 and is directly

compared to the distribution obtained from a long brute force
simulation. The logarithmic scale highlights the close agree-
ment both in the metastable basins at r/r0 = 1 and 2 but also in
the energetically less accessible extension distances in the
barrier region and in the tails of the distribution. Although here
we are examining the distribution along the progress coordinate
used in the simulation, w_pdist can also be simply configured to
use other data sets stored in the main WESTPA HDF5 file or
constructed data sets built on-the-fly from any auxiliary data
generated during the simulation. The w_pdist tool can be
paired with plothist, to quickly visualize any calculated
distribution or the raw data it generates can be used to
compose custom plots like Figure 6.
The w_kinetics and w_kinavg tools are used to calculate the

rates of transitioning between the compact and extended
conformations of the dimer. The former tool determines kinetic
quantities by tracing the pathways of individual trajectories as
they move between user-defined states, and the latter tool
calculates the average rates and associated errors. Here we
define the compact state as any conformation of the system
with r/r0 < 1.1 and the extended as r/r0 > 1.83 The evolution of
the rates over the course of the WE simulation is shown in
Figure 7, and the rates are again compared to the same
quantities calculated from a long brute force trajectory.
The complete analysis shown in Figures 6 and 7, along with

the generation of rudimentary plots for fast inspection can be
accomplished with the set of commands shown in Table 2.
In Table 2, $WEST_ROOT represents the directory which

contains the WESTPA software. The figures generated by
plothist and ploterr are shown as Supporting Information
Figures S1−S5.

Figure 6. Probability distribution of the bistable dimer separation
distribution obtained from a long brute force trajectory (line)
compared to the same quantity calculated from a WE simulation
(open circles).

Journal of Chemical Theory and Computation Article

DOI: 10.1021/ct5010615
J. Chem. Theory Comput. 2015, 11, 800−809

807

http://dx.doi.org/10.1021/ct5010615

6. SUMMARY

WESTPA is an open-source, interoperable, high-performance
software implementation of the weighted ensemble (WE) path
sampling approach, which increases the efficiency of simulating
rare events while maintaining rigorous kinetics. The WE
approach permits simulation of equilibrium, nonequilibrium
steady-state, and relaxation processes, and WESTPA supports
all of these simulation types. The WESTPA software includes
facilities for running simulations in serial and parallel and scales
from single-core workstations to the thousands of cores
available on supercomputing clusters. WESTPA can be used
with any stochastic dynamics engines (including existing
simulation packages or custom dynamics propagation routines)
at any scale (e.g., atomistic, molecular, or cellular models). The
WESTPA package also provides a toolkit of optimized
programs for various types of simulation analysis, including
assessment of convergence and error estimation for key
observables like state populations and rate constants. Extensive
resources (currently listed at https://chong.chem.pitt.edu/
WESTPA) are available for researchers to facilitate the
incorporation of WE simulations into their work, including
searchable online user and developer forums as well as tutorials
focused on problems and/or types of simulations that are of
wide interest. The portability of WESTPA, combined with its
interoperability and optimized scaling, are essential for
advancing the ability of researchers to address challenging
problems requiring rare event sampling.

■ ASSOCIATED CONTENT

*S Supporting Information
Description of the analysis of the WCA dimer simulation
(including example input and output from the WESTPA
analysis tools) and detailed descriptions of the progress
coordinate binning facilities (including example code). This
material is available free of charge via the Internet at http://
pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author
*E-mail: Itchong@pitt.edu.

Notes
The authors declare no competing financial interest.

Figure 7. Evolution of the rate of interconversion from the compact to
extended conformations (kA→B) of the bistable dimer (upper panel)
and from the extended to compact conformation (kB→A) (lower panel)
calculated from a WE simulation with the w_kinetics and w_kinavg
tools. The solid blue line shows the mean rate calculated from the last
50% of the WE iterations at a given time point, with the region filled in
blue delineating the 95% confidence interval. The rates calculated from
a long brute force trajectory are shown as solid black lines, with the
brute force 95% confidence interval falling between the black dashed
lines.

Table 2

command

Journal of Chemical Theory and Computation Article

DOI: 10.1021/ct5010615
J. Chem. Theory Comput. 2015, 11, 800−809

808

https://chong.chem.pitt.edu/WESTPA
https://chong.chem.pitt.edu/WESTPA
http://pubs.acs.org
http://pubs.acs.org
mailto:Itchong@pitt.edu
http://dx.doi.org/10.1021/ct5010615

■ ACKNOWLEDGMENTS

This work was supported by NSF CAREER award MCB-
0845216 to L.T.C.; the Office of the Provost at Drake
University (M.C.Z.); National Institutes of Health (NIH)
Grant No. R01-GM089740 (M.G.); NIH Grant No. T32-
DK061296 (J.L.A.); NIH Grant No. P41 GM103712 and NSF
Grant No. MCB-1119091 (D.M.Z.); University of Pittsburgh
Arts & Sciences Graduate, Department of Chemistry Graduate
Excellence, and University of Pittsburgh Andrew Mellon
Fellowships (M.C.Z.); and a University of Pittsburgh
Brackenridge Fellowship underwritten by the United States
Steel Foundation (J.W.K.). Computational resources were
provided by NSF XSEDE award MCB-100109, NSF MRI
award CNS-1229064, and by the Center for Simulation and
Modeling at the University of Pittsburgh.

■ REFERENCES
(1) Faradjian, A. K.; Elber, R. J. Chem. Phys. 2004, 120, 10880.
(2) Elber, R.; Roitberg, A.; Simmerling, C.; Goldstein, R.; Li, H.;
Verkhivker, G.; Keasar, C.; Zhang, J.; Ulitsky, A. Comput. Phys.
Commun. 1995, 91, 159.
(3) Dellago, C.; Bolhuis, P. G.; Csajka, F.; Chandler, D. J. Chem. Phys.
1998, 108, 1964.
(4) Brooks, B. R.; Brooks, C. L., III; Mackerell, A. D., Jr.; Nilsson, L.;
Petrella, R. J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch,
S.; Caflisch, A.; Caves, L.; Cui, Q.; Dinner, A. R.; Feig, M.; Fischer, S.;
Gao, J.; Hodoscek, M.; Im, W.; Kuczera, K.; Lazaridis, T.; Ma, J.;
Ovchinnikov, V.; Paci, E.; Pastor, R. W.; Post, C. B.; Pu, J. Z.; Schaefer,
M.; Tidor, B.; Venable, R. M.; Woodcock, H. L.; Wu, X.; Yang, W.;
York, D. M.; Karplus, M. J. Comput. Chem. 2009, 30, 1545.
(5) Kratzer, K.; Berryman, J. T.; Taudt, A.; Zeman, J.; Arnold, A.
Comput. Phys. Commun. 2014, 185, 1875.
(6) Allen, R. J.; Warren, P.; ten Wolde, P. R. Phys. Rev. Lett. 2005, 94,
018104.
(7) Beauchamp, K. A.; Bowman, G. R.; Lane, T. J.; Maibaum, L.;
Haque, I. S.; Pande, V. S. J. Chem. Theory Comput. 2011, 7, 3412.
(8) Senne, M.; Trendelkamp-Schroer, B.; Mey, A. S. J. S.; Schütte, C.;
Noe,́ F. J. Chem. Theory Comput. 2012, 8, 2223.
(9) Chodera, J. D.; Swope, W. C.; Pitera, J. W.; Dill, K. A. Multiscale
Model. Simul. 2006, 5, 1214.
(10) Bowman, G. R.; Ensign, D. L.; Pande, V. S. J. Chem. Theory
Comput. 2010, 6, 787.
(11) Doerr, S.; De Fabritiis, G. J. Chem. Theory Comput. 2014, 10,
2064.
(12) Huber, G. A.; Kim, S. Biophys. J. 1996, 70, 97.
(13) Rojnuckarin, A.; Kim, S.; Subramaniam, S. Proc. Natl. Acad. Sci.
U.S.A. 1998, 95, 4288.
(14) Rojnuckarin, A.; Livesay, D. R.; Subramaniam, S. Biophys. J.
2000, 79, 686.
(15) Zhang, B. W.; Jasnow, D.; Zuckerman, D. M. Proc. Natl. Acad.
Sci. U.S.A. 2007, 104, 18043.
(16) Zhang, B. W.; Jasnow, D.; Zuckerman, D. M. J. Chem. Phys.
2010, 132, 054107.
(17) Bhatt, D.; Zhang, B. W.; Zuckerman, D. M. J. Chem. Phys. 2010,
133, 014110.
(18) Bhatt, D.; Zuckerman, D. M. J. Chem. Theory Comput. 2010, 6,
3527.
(19) Zwier, M. C.; Kaus, J. W.; Chong, L. T. J. Chem. Theory Comput.
2011, 7, 1189.
(20) Adelman, J. L.; Dale, A. L.; Zwier, M. C.; Bhatt, D.; Chong, L.
T.; Zuckerman, D. M.; Grabe, M. Biophys. J. 2011, 101, 2399.
(21) Bhatt, D.; Bahar, I. J. Chem. Phys. 2012, 137, 104101.
(22) Donovan, R. M.; Sedgewick, A. J.; Faeder, J. R.; Zuckerman, D.
M. J. Chem. Phys. 2013, 139, 115105.
(23) Adelman, J. L.; Grabe, M. J. Chem. Phys. 2013, 138, 044105.
(24) Dickson, A.; Brooks, C. L., III J. Phys. Chem. B 2014, 118, 3532.

(25) Abdul-Wahid, B.; Feng, H.; Rajan, D.; Costaouec, R.; Darve, E.;
Thain, D.; Izaguirre, J. A. J. Chem. Inf. Model. 2014, 3033.
(26) Dickson, A.; Mustoe, A. M.; Salmon, L.; Brooks, C. L. Nucleic
Acids Res. 2014, 42, 12126.
(27) Suaŕez, E.; Lettieri, S.; Zwier, M. C.; Stringer, C. A.;
Subramanian, S. R.; Chong, L. T.; Zuckerman, D. M. J. Chem. Theory
Comput. 2014, 10, 2658.
(28) Pronk, S.; Pall, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.;
Apostolov, R.; Shirts, M. R.; Smith, J. C.; Kasson, P. M.; van der Spoel,
D.; Hess, B.; Lindahl, E. Bioinformatics 2013, 29, 845.
(29) Case, D. A.; Cheatham, T. E.; Darden, T.; Gohlke, H.; Luo, R.;
Merz, K. M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J. J.
Comput. Chem. 2005, 26, 1668.
(30) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid,
E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale,́ L.; Schulten, K. J. Comput.
Chem. 2005, 26, 1781.
(31) Eastman, P.; Friedrichs, M. S.; Chodera, J. D.; Radmer, R. J.;
Bruns, C. M.; Ku, J. P.; Beauchamp, K. A.; Lane, T. J.; Wang, L.-P.;
Shukla, D.; Tye, T.; Houston, M.; Stich, T.; Klein, C.; Shirts, M. R.;
Pande, V. S. J. Chem. Theory Comput. 2013, 9, 461.
(32) Elcock, A. H. PLoS Comput. Biol. 2006, 2, e98.
(33) Frembgen-Kesner, T.; Elcock, A. H. J. Chem. Theory Comput.
2009, 5, 242.
(34) Blinov, M. L.; Faeder, J. R.; Goldstein, B.; Hlavacek, W. S.
Bioinformatics 2004, 20, 3289.
(35) Kerr, R. A.; Bartol, T. M.; Kaminsky, B.; Dittrich, M.; Chang, J.-
C. J.; Baden, S. B.; Sejnowski, T. J.; Stiles, J. R. SIAM J. Sci. Comput.
2008, 30, 3126.
(36) Frenkel, D.; Smit, B. Understanding molecular simulation: from
algorithms to applications, 2nd ed.; Academic Press: San Diego, 2002.
(37) Basconi, J. E.; Shirts, M. R. J. Chem. Theory Comput. 2013, 9,
2887.
(38) Oliphant, T. E. Comput. Sci. Eng. 2007, 9, 10.
(39) Perez, F.; Granger, B. E.; Hunter, J. D. Comput. Sci. Eng. 2011,
13, 13.
(40) van der Walt, S.; Colbert, S. C.; Varoquaux, G. Comput. Sci. Eng.
2011, 13, 22.
(41) Behnel, S.; Bradshaw, R.; Citro, C.; Dalcin, L.; Seljebotn, D. S.;
Smith, K. Comput. Sci. Eng. 2011, 13, 31.
(42) Collette, A. Python and HDF5; O’Reilly: Sebastopol, CA, 2014.
(43) Zhang, B. W.; Jasnow, D.; Zuckerman, D. M. J. Chem. Phys.
2007, 126, 074504.
(44) Loeliger, J.; McCullough, M. Version Control Using Git, 2nd ed.;
O’Reilly: Sebastopol, CA, 2012.
(45) Wilson, G.; Aruliah, D. A.; Brown, C. T.; Chue Hong, N. P.;
Davis, M.; Guy, R. T.; Haddock, S. H. D.; Huff, K. D.; Mitchell, I. M.;
Plumbley, M. D.; Waugh, B.; White, E. P.; Wilson, P. PLoS Biol. 2014,
12, e1001745.
(46) Dellago, C.; Bolhuis, P. G.; Chandler, D. J. Chem. Phys. 1999,
110, 6617.
(47) Straub, J. E.; Borkovec, M.; Berne, B. J. J. Chem. Phys. 1988, 89,
4833.
(48) Nilmeier, J. P.; Crooks, G. E.; Minh, D. D. L.; Chodera, J. D.
Proc. Natl. Acad. Sci. U.S.A. 2011, 108, E1009.
(49) Weeks, J. D.; Chandler, D.; Andersen, H. C. J. Chem. Phys. 1971,
54, 5237.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/ct5010615
J. Chem. Theory Comput. 2015, 11, 800−809

809

http://dx.doi.org/10.1021/ct5010615

